
Nathan Eastwood 30/07/2020

{poorman}
A dependency free recreation of {dplyr}

Today’s Talk

•Who Am I?

•What Is {poorman}?

•What Does {poorman} Include?

• Let’s Manipulate Some Data!

•Why Develop {poorman} and other FAQs

•What Does The Future Hold For {poorman}?

https://github.com/nathaneastwood/poorman

Who Am I?
A PROGRAMMER n. [proh-gram-er]; see also WIZARD, MAGICIAN

list(
 name = "Nathan",
 age = 30,
 education = list(
 level = c("BSc", "MSc"),
 course = c("Mathematics and Statistics", "Statistics")
),
 R = list(years = 11),
 company = "NE Data",
 industries = c(
 "B2B Insurance", "Marketing", "Advertising", "Government", "Telecommunications", "Energy", "and more"
),
 clients = c(
 "Atradius", "Equiniti", "AT&T", "Office for National Statistics", "NATO", "Public Health England", "and more"
)
)

https://github.com/nathaneastwood/poorman

What Is {poorman}?
An awesome R package!

• {poorman} is a feature rich, grammar of data manipulation R 📦

• It unapologetically 💁 tries to recreate the {dplyr} API exactly

• Written entirely using {base}, i.e. 0⃣ dependencies

• Installation time is ~6 seconds 💯

• Many of the {dplyr} verbs are included

• A version of the pipe, %>%, is included

https://github.com/nathaneastwood/poorman

What Does {poorman} Include?
Lots of core goodies!

select(), rename(), pull(), relocate()
mutate(), transmute()
arrange()
filter(), slice()
summarise() / summarize()
group_by(), ungroup()

inner_join(), left_join(), right_join(), full_join()
anti_join(), semi_join()

%>%

https://github.com/nathaneastwood/poorman

What Does {poorman} Include?
As well as lots of other great features!

Vector functions:
between(), coalesce(), desc(), if_else(), lag(), lead(), n_distinct(), na_if(),
near(), recode(), recode_factor()

Window functions:
cume_dist(), dense_rank(), min_rank(), ntile(), percent_rank(), row_number()

https://github.com/nathaneastwood/poorman

But Wait! There’s More!
Not so poor after all!

• {poorman} also includes its own version of {tidyselect}

starts_with(), ends_with(), contains(), matches(), all_of(), any_of(), everything(),
last_col(), where()

• There are also features from 🧹 {tidyr}

replace_na(), rownames_to_column()

• And more!

https://github.com/nathaneastwood/poorman

Let’s Manipulate Some Data
We’ll Use mtcars

r"$> poorman"::glimpse(mtcars)
 #'data.frame': 32 obs. of 11 variables:
 # $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ""...
 # $ cyl : num 6 6 4 6 8 6 8 4 4 6 ""...
 # $ disp: num 160 160 108 258 360 ""...
 # $ hp : num 110 110 93 110 175 105 245 62 95 123 ""...
 # $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ""...
 # $ wt : num 2.62 2.88 2.32 3.21 3.44 ""...
 # $ qsec: num 16.5 17 18.6 19.4 17 ""...
 # $ vs : num 0 0 1 1 0 1 0 1 1 1 ""...
 # $ am : num 1 1 1 0 0 0 0 0 0 0 ""...
 # $ gear: num 4 4 4 3 3 3 3 4 4 4 ""...
 # $ carb: num 4 4 1 1 2 1 4 2 2 4 ""...

https://github.com/nathaneastwood/poorman

Let’s Manipulate Some Data
data THEN select() THEN mutate() THEN filter()

r"$> library(poorman, warn.con"flicts = FALSE)

r"$> mtcars %>%
 select(mpg, starts_with("c")) %>%
 mutate(mpg2 = mpg * 2, mpg4 = mpg2 * 2) %>%
 filter(mpg > 28)
 # mpg cyl carb mpg2 mpg4
 # Fiat 128 32.4 4 1 64.8 129.6
 # Honda Civic 30.4 4 2 60.8 121.6
 # Toyota Corolla 33.9 4 1 67.8 135.6
 # Lotus Europa 30.4 4 2 60.8 121.6

https://github.com/nathaneastwood/poorman

Let’s Manipulate Some Data
data THEN group_by() THEN summarise()

r"$> mtcars %>%
 group_by(am, cyl) %>%
 summarise(mean_mpg = mean(mpg), sum_mpg = sum(mpg))
 # am cyl mean_mpg sum_mpg
 # 1 0 4 22.90000 68.7
 # 2 0 6 19.12500 76.5
 # 3 0 8 15.05000 180.6
 # 4 1 4 28.07500 224.6
 # 5 1 6 20.56667 61.7
 # 6 1 8 15.40000 30.8

https://github.com/nathaneastwood/poorman

Let’s Manipulate Some Data
data THEN rownames_to_column() THEN inner_join()

r"$> prices "<- data.frame(
 car = c("Datsun 710", "Merc 230"),
 price = c(10000, 15000)
)
r"$> mtcars %>%
 rownames_to_column("car") %>%
 inner_join(prices)
 # Joining, by = “car”
 #
 # car mpg cyl disp hp drat wt qsec vs am gear carb price
 # 1 Datsun 710 22.8 4 108.0 93 3.85 2.32 18.61 1 1 4 1 10000
 # 2 Merc 230 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4 2 15000

https://github.com/nathaneastwood/poorman

Demo

Why Develop {poorman}?
Quite simply, because it was fun!

• {poorman} grew organically 🌱

• It was an interesting challenge

• As a freelance developer 👨💻, it shows off my skills nicely

• {poorman} provides a platform to show and teach 👨🏫 {base} skills

https://github.com/nathaneastwood/poorman

Why Develop {poorman}?
But more seriously…

• In the corporate world, dependencies can be bad for business 🤨

• I don’t always need the fancy backends provided by {dbplyr}

• I wanted to use the API in my packages without forcing further dependencies 🎁 on
my users

• Installation times ⏱

• I wanted a source that was easier to understand and which provided nicer tracebacks

• I wanted to challenge a common misconception that {base} R is not as powerful 💪,
or as good, or as useful as {dplyr}

https://github.com/nathaneastwood/poorman

Sidney Poitier

“I’d seen my father. He was a poor man,
and I watched him do astonishing things.”

How Does {poorman} Compare In Terms Of Speed?
When this thing gets up to 88 mph, you're gonna see some serious s***

• I haven’t ran any benchmarks 😔

• There are plenty of benchmarks comparing {dplyr} and {base} online 😃

• {poorman} will perform similarly to those benchmarks 😏

• If speed is a concern of yours, I’d recommend considering {data.table} 🤯

https://github.com/nathaneastwood/poorman

What Does The Future Hold For {poorman}?
A great many things!

• More features from {dplyr} and the wider {tidyverse}, e.g. tidyr::pivot_wide()
➡ and tidyr::pivot_longer() ⬇

• Possible different backends (C++, {data.table}) which are user choices

• A poor man’s alternative to {rlang}

• … and documentation 📘

https://github.com/nathaneastwood/poorman

Thanks For Listening!
(shameless plugs go here)

• Don’t forget to ⭐ the repo: https://github.com/nathaneastwood/poorman

• Or 🐦 about it and @nathaneastwood_

• If you need an R developer, get in touch: nathan.eastwood@icloud.com

• Or if you’d like to chat more about R, {poorman}, dependencies, etc. then feel
free to message me

https://github.com/nathaneastwood/poorman
mailto:nathan.eastwood@icloud.com
https://github.com/nathaneastwood/poorman
mailto:nathan.eastwood@icloud.com

